光譜共焦傳感器作為一種新型的高精度傳感器,其測量精度最高可達±0.02%。相比于光柵、容柵或電感調(diào)頻、電感差動變壓器式的位移傳感器,其在位移測量方面的優(yōu)勢更加明顯。如今,由于光譜共焦傳感器有著高精度、非接觸測量等優(yōu)勢,因此,其在幾何量精密測量方面的應用越來越廣泛,如漫反射及平面反射的位移測量、平面度測量、薄膜及透明材料厚度測量、表面粗糙度測量等。
在位移測量方面,自光譜共焦傳感器問世以來,它的主要功能便是測量位移。馬敬等對光譜共焦傳感器的色散物鏡進行研究,設計了色散物鏡的結構,提高了光譜共焦傳感器的各項性能;畢超等利用光譜共焦傳感器實現(xiàn)了對航空發(fā)動機轉子葉尖間隙的高精度、高效率的測量。
在平面度測量方面,位恒政等對光譜共焦傳感器的探測誤差進行研究,其中,在對平面探測誤差研究時,利用光譜共焦傳感器對圓平晶的平面度進行測量,得到了平面探測誤差值。
在薄膜及透明材料厚度測量方面,朱萬彬等分析了光譜共焦傳感器在測量透明平板的平面度時,由透明平板的折射率不同而引入的測量誤差并進行補償;曹太騰等基于三維數(shù)據(jù)精確測量的機器視覺系統(tǒng),利用光譜共焦傳感器對透明材料厚度及弧形玻璃弧面厚度進行檢測。
在表面粗糙度測量方面,沈小燕等分析了不同測量方法測量表面粗糙度時的優(yōu)缺點,最終選擇了基于光譜共焦傳感器的測量方法并進行了相關實驗,為表面粗糙度的精密測量提供了一種新的方法;林杰俊等利用光譜共焦法測量表面粗糙度樣塊的表面粗糙度,并分析了其測量不確定度。
本文利用最小二乘法計算校準誤差并進行非線性誤差計算,減小光譜共焦傳感器校準時的誤差,并在不同精度標準器下,探索光譜共焦傳感器的校準誤差的變化情況,對今后對光譜共焦傳感器的應用及研究有著重要的意義。
光譜共焦傳感器是近年來出現(xiàn)的一種利用不同顏色光的波長來測量微小距離的新型高精度傳感器。它的原理脫胎自上世紀80年代出現(xiàn)的共聚焦顯微鏡,在此基礎上,又添加了彩色編碼技術,使得彩色光的波長與待測長度聯(lián)系在了一起。由于所測長度直接與彩色光的波長相關聯(lián),使得測量精度進一步提高,光譜共焦傳感器的出現(xiàn)極大促進了精密測量領域的發(fā)展。
光譜共焦傳感器的原理如圖1所示,白光通過小孔后,可以近似認為是點光源,然后通過分光棱鏡和色散物鏡,形成彩色光,彩色光聚焦于中心光軸上。當被測物體置于彩色光的聚焦范圍以內(nèi)時,能夠?qū)⑦@些彩色光反射,使其原路返回,到達光譜儀。光譜儀與分光棱鏡之間的針孔起到了濾光的作用,只有準確聚焦與待測物體表面的單色光能夠進入光譜儀,因此,在很大程度上,提高了測量的準確度。
3.1 實驗過程
分別采用激光干涉儀與高精度測長機兩種方法對光譜共焦傳感器進行校準。所用的激光干涉儀型號為XL-80,精度為±0.5X10-6,所用的高精度測長機的精度為0.1μm。圖1 光譜共焦傳感器原理
]]>1、激光測距雷達
激光測距雷達是通過對被測物體發(fā)射激光光束,并接收該激光光束的反射波,記錄該時間差,來確定被測物體與測試點的距離。傳統(tǒng)上,激光雷達可用于工業(yè)的安全檢測領域,如科幻片中看到的激光墻,當有人闖入時,系統(tǒng)會立馬做出反應,發(fā)出預警。另外,激光測距雷達在空間測繪領域也有廣泛應用。但隨著人工智能行業(yè)的興起,激光測距雷達已成為機器人體內(nèi)不可或缺的核心部件,配合SLAM技術使用,可幫助機器人進行實時定位導航,實現(xiàn)自主行走。
2、激光測速雷達
激光測速雷達是對物體移動速度的測量,通過對被測物體進行兩次有特定時間間隔的激光測距,從而得到該被測物體的移動速度。
激光雷達測速的方法主要有兩大類,一類是基于激光雷達測距原理實現(xiàn),即以一定時間間隔連續(xù)測量目標距離,用兩次目標距離的差值除以時間間隔就可得知目標的速度值,速度的方向根據(jù)距離差值的正負就可以確定。這種方法系統(tǒng)結構簡單,測量精度有限,只能用于反射激光較強的硬目標。
另一類測速方法是利用多普勒頻移。多普勒頻移是指目標與激光雷達之間存在相對速度時,接收回波信號的頻率與發(fā)射信號的頻率之間會產(chǎn)生一個頻率差,這個頻率差就是多普勒頻移。
3、激光成像雷達
激光成像雷達可用于探測和跟蹤目標、獲得目標方位及速度信息等。它能夠完成普通雷達所不能完成的任務,如探測潛艇、水雷、隱藏的軍事目標等等。在軍事、航空航天、工業(yè)和醫(yī)學領域被廣泛應用。
4、大氣探測激光雷達
大氣探測激光雷達主要是用來探測大氣中的分子、煙霧的密度、溫度、風速、風向及大氣中水蒸氣的濃度的,以達到對大氣環(huán)境進行監(jiān)測及對暴風雨、沙塵暴等災害性天氣進行預報的目的。
5、跟蹤雷達
跟蹤雷達可以連續(xù)的去跟蹤一個目標,并測量該目標的坐標,提供目標的運動軌跡。不僅用于火炮控制、導彈制導、外彈道測量、衛(wèi)星跟蹤、突防技術研究等,而且在氣象、交通、科學研究等領域也在日益擴大。
1、固體激光雷達
固體激光雷達峰值功率高,輸出波長范圍與現(xiàn)有的光學元件與器件相匹配,輸出長范圍與現(xiàn)有的光學元件與器件(如調(diào)制器、隔離器和探測器)以及大氣傳輸特性也相匹配等,而且很容易實現(xiàn)主振蕩器-功率放大器(MOPA)結構,再加上效率高、體積小、重量輕、可靠性高和穩(wěn)定性好等優(yōu)勢,固體激光雷達優(yōu)先在機載和天基系統(tǒng)中得到應用。近年來,激光雷達發(fā)展的重點是二極管泵浦固體激光雷達。
2、氣體激光雷達
氣體激光雷達以CO2激光雷達為代表,它工作在紅外波段 ,大氣傳輸衰減小,探測距離遠,已經(jīng)在大氣風場和環(huán)境監(jiān)測方面發(fā)揮了很大作用,但體積大,使用的中紅外 HgCdTe探測器必須在77K溫度下工作,限制了氣體激光雷達的發(fā)展。
3、半導體激光雷達
半導體激光雷達能以高重復頻率方式連續(xù)工作,具有長壽命,小體積,低成本和對人眼傷害小的優(yōu)點,被廣泛應用于后向散射信號比較強的Mie散射測量,如探測云底高度。半導體激光雷達的潛在應用是測量能見度,獲得大氣邊界層中的氣溶膠消光廓線和識別雨雪等,易于制成機載設備。目前芬蘭Vaisala公司研制的CT25K激光測云儀是半導體測云激光雷達的典型代表,其云底高度的測量范圍可達7500m。
1、單線激光雷達
單線激光雷達主要用于規(guī)避障礙物,其掃描速度快、分辨率強、可靠性高。由于單線激光雷達比多線和3D激光雷達在角頻率和靈敏度反映更加快捷,所以,在測試周圍障礙物的距離和精度上都更加精 確。但是,單線雷達只能平面式掃描,不能測量物體高度,有一定局限性。當前主要應用于服務機器人身上,如我們常見的掃地機器人。
2、多線激光雷達
多線激光雷達主要應用于汽車的雷達成像,相比單線激光雷達在維度提升和場景還原上有了質(zhì)的改變,可以識別物體的高度信息。多線激光雷達常規(guī)是2.5D,而且可以做到3D。目前在國際市場上推出的主要有 4線、8線、16 線、32 線和 64 線。但價格高昂,大多車企不會選用。
3、面陣激光雷達
1、MEMS型激光雷達
MEMS 型激光雷達可以動態(tài)調(diào)整自己的掃描模式,以此來聚焦特殊物體,采集更遠更小物體的細節(jié)信息并對其進行識別,這是傳統(tǒng)機械激光雷達無法實現(xiàn)的。MEMS整套系統(tǒng)只需一個很小的反射鏡就能引導固定的激光束射向不同方向。由于反射鏡很小,因此其慣性力矩并不大,可以快速移動,速度快到可以在不到一秒時間里跟蹤到 2D 掃描模式。
2、Flash型激光雷達
Flash型激光雷達能快速記錄整個場景,避免了掃描過程中目標或激光雷達移動帶來的各種麻煩,它運行起來比較像攝像頭。激光束會直接向各個方向漫射,因此只要一次快閃就能照亮整個場景。隨后,系統(tǒng)會利用微型傳感器陣列采集不同方向反射回來的激光束。Flash LiDAR有它的優(yōu)勢,當然也存在一定的缺陷。當像素越大,需要處理的信號就會越多,如果將海量像素塞進光電探測器,必然會帶來各種干擾,其結果就是精度的下降。
3、相控陣激光雷達
相控陣激光雷達搭載的一排發(fā)射器可以通過調(diào)整信號的相對相位來改變激光束的發(fā)射方向。目前大多數(shù)相控陣激光雷達還在實驗室里呆著,而現(xiàn)在仍停留在旋轉式或 MEMS 激光雷達的時代,
4、機械旋轉式激光雷達
機械旋轉式激光雷達是發(fā)展比較早的激光雷達,目前技術比較成熟,但機械旋轉式激光雷達系統(tǒng)結構十分復雜,且各核心組件價格也都頗為昂貴,其中主要包括激光器、掃描器、光學組件、光電探測器、接收IC以及位置和導航器件等。由于硬件成本高,導致量產(chǎn)困難,且穩(wěn)定性也有待提升,目前固態(tài)激光雷達成為很多公司的發(fā)展方向。
1、直接探測激光雷達
直接探測型激光雷達的基本結構與激光測距機頗為相近。工作時,由發(fā)射系統(tǒng)發(fā)送一個信號,經(jīng)目標反射后被接收系統(tǒng)收集,通過測量激光信號往返傳播的時間而確定目標的距離。至于目標的徑向速度,則可以由反射光的多普勒頻移來確定,也可以測量兩個或多個距離,并計算其變化率而求得速度。
2、相干探測激光雷達
相干探測型激光雷達有單穩(wěn)與雙穩(wěn)之分,在所謂單穩(wěn)系統(tǒng)中,發(fā)送與接收信號共用一個光學孔徑,并由發(fā)送-接收開關隔離。而雙穩(wěn)系統(tǒng)則包括兩個光學孔徑,分別供發(fā)送與接收信號使用,發(fā)送-接收開關自然不再需要,其余部分與單穩(wěn)系統(tǒng)相同。
1、連續(xù)型激光雷達
從激光的原理來看,連續(xù)激光就是一直有光出來,就像打開手電筒的開關,它的光會一直亮著(特殊情況除外)。連續(xù)激光是依靠持續(xù)亮光到待測高度,進行某個高度下數(shù)據(jù)采集。由于連續(xù)激光的工作特點,某時某刻只能采集到一個點的數(shù)據(jù)。因為風數(shù)據(jù)的不確定特性,用一點代表某個高度的風況,顯然有些片面。因此有些廠家折中的辦法是采取旋轉360度,在這個圓邊上面采集多點進行平均評估,顯然這是一個虛擬平面中的多點統(tǒng)計數(shù)據(jù)的概念。
2、脈沖型激光雷達
脈沖激光輸出的激光是不連續(xù)的,而是一閃一閃的。脈沖激光的原理是發(fā)射幾萬個的激光粒子,根據(jù)國際通用的多普勒原理,從這幾萬個激光粒子的反射情況來綜合評價某個高度的風況,這個是一個立體的概念,因此才有探測長度的理論。從激光的特性來看,脈沖激光要比連續(xù)激光測量的點位多幾十倍,更能夠精 確的反應出某個高度風況。
1、機載激光雷達
機載激光雷達是將激光測距設備、GNSS設備和INS等設備緊密集成,以飛行平臺為載體,通過對地面進行掃描,記錄目標的姿態(tài)、位置和反射強度等信息,獲取地表的三維信息,并深入加工得到所需空間信息的技術。在軍民用領域都有廣泛的潛力和前景。機載激光雷達探測距離近,激光在大氣中傳輸時,能量受大氣影響而衰減,激光雷達的作用距離在20千米以內(nèi),尤其在惡劣氣候條件下,比如濃霧、大雨和煙、塵,作用距離會大大縮短,難以有效工作。大氣湍流也會不同程度上降低激光雷達的測量精度。
2、車載激光雷達
車載激光雷達又稱車載三維激光掃描儀,是一種移動型三維激光掃描系統(tǒng),可以通過發(fā)射和接受激光束,分析激光遇到目標對象后的折返時間,計算出目標對象與車的相對距離,并利用收集的目標對象表面大量的密集點的三維坐標、反射率等信息,快速復建出目標的三維模型及各種圖件數(shù)據(jù),建立三維點云圖,繪制出環(huán)境地圖,以達到環(huán)境感知的目的。車載激光雷達在自動駕駛“造車”大潮中扮演的角色正越來越重要,諸如谷歌、百度、寶馬、博世、德爾福等企業(yè),都在其自動駕駛系統(tǒng)中使用了激光雷達,帶動車載激光雷達產(chǎn)業(yè)迅速擴大。
3、地基激光雷達
地基激光雷達可以獲取林區(qū)的3D點云信息,利用點云信息提取單木位置和樹高,它不僅節(jié)省了人力和物力,還提高了提取的精度,具有其它遙感方式所無法比擬的優(yōu)勢。通過對國內(nèi)外該技術林業(yè)應用的分析和對該發(fā)明研究后期的結果驗證,未來將會在更大的研究區(qū)域利用該技術提取各種森林參數(shù)。
4、星載激光雷達
星載雷達采用衛(wèi)星平臺,運行軌道高、觀測視野廣,可以觸及世界的每一個角落。為境外地區(qū)三維控制點和數(shù)字地面模型的獲取提供了新的途徑,無論對于國防或是科學研究都具有十分重大意義。星載激光雷達還具有觀察整個天體的能力,美國進行的月球和火星等探測計劃中都包含了星載激光雷達,其所提供的數(shù)據(jù)資料可用于制作天體的綜合三維地形圖。此外,星載激光雷達載植被垂直分布測量、海面高度測量、云層和氣溶膠垂直分布測量以及特殊氣候現(xiàn)象監(jiān)測等方面也可以發(fā)揮重要作用。
通過以上對激光雷達特點、原理、應用領域等介紹,相信大家也能大致了解各類激光雷達的不同屬性了,眼下,在激光雷達這個競爭越來越激烈的賽道上,打造低成本、可量產(chǎn)、的激光雷達是很多新創(chuàng)公司想要實現(xiàn)的夢想。但開發(fā)和量產(chǎn)激光雷達并不容易。豐富的行業(yè)經(jīng)驗和可靠的技術才能保障其在這一波大潮中占據(jù)主導地位。
]]>影響產(chǎn)品品質(zhì)的因素多種多樣,例如外觀品質(zhì)、功能品質(zhì)、性能品質(zhì)等。用戶和生產(chǎn)企業(yè)對產(chǎn)品質(zhì)量的要求越來越高,除了較高的功能品質(zhì)和性能品質(zhì)之外,對外觀品質(zhì)的要求也在逐年提高,即良好的表面質(zhì)量。
然而,即便是嚴格把控制造的每一道流程,生產(chǎn)良品率也無法達到100%,這意味著總會有不合格品被生產(chǎn)出來。
而表面缺陷檢測便是阻止不合格品流入市場的“門神”。
1.產(chǎn)品表面缺陷檢測
作為生產(chǎn)制造過程中必不可少的一步,表面缺陷檢測廣泛應用于各工業(yè)領域,包括3C、半導體及電子、汽車、化工、醫(yī)藥、輕工、軍工等行業(yè),催生了眾多上下游企業(yè)。
自20世紀開始,表面缺陷檢測大致經(jīng)歷了三個階段,分別是人工目視法檢測法、機械裝置接觸檢測法以及機器視覺檢測法。
第一種是人工目視法檢測法。制造企業(yè)招聘大量的質(zhì)檢工人,采取流水線的形式進行檢測。然而,隨著人口紅利的消失,以及工作枯燥、自由度低、薪酬較少,愿意從事質(zhì)檢的越來越少,用工難問題愈發(fā)凸顯,這種方法不僅成本高,而且在對微小缺陷進行判別時,難以達到所需要的精度和速度,人工檢測法還存在勞動強度大、檢測標準一致性差等缺點。
第二種是機械裝置接觸檢測法。這種方法雖然在質(zhì)量上能滿足生產(chǎn)的需要,但存在檢測設備價格高、靈活性差、速度慢、易損耗等缺點。
第三種是機器視覺檢測法。為了在不斷變化和競爭愈發(fā)激烈的市場中占據(jù)優(yōu)勢,企業(yè)既要不斷提高產(chǎn)品質(zhì)量標準以滿足客戶需求,又要不斷提升生產(chǎn)線的效率以適應市場的快節(jié)奏。采用自動化、智能化的表面缺陷檢測方法是兼顧質(zhì)量與效率的重要手段。
即利用圖像處理和分析對產(chǎn)品可能存在的缺陷進行檢測,這種方法采用非接觸的工作方式,安裝靈活,測量精度和速度都比較高,同一臺機器視覺檢測設備可以實現(xiàn)對不同產(chǎn)品的多參數(shù)檢測,為企業(yè)節(jié)約大筆設備開支。
2.表面缺陷檢測存在的問題
基于機器視覺的表面缺陷檢測將是未來研究和發(fā)展的主要方向,目前,基于機器視覺的表面缺陷檢測理論研究和實際應用等環(huán)節(jié)均有可喜的成果,但仍存在下面主要的問題和難點:
不同缺陷的種類復雜:類間差異大,工業(yè)品的外觀缺陷復雜多樣,不同類別的缺陷之間形態(tài)特征可能差異極大,這種差異導致檢測算法的普適性不強,許多缺陷需單獨開發(fā)檢測算法,開發(fā)復雜度極高。類間模糊性大,類間模糊是類間差異大的另一極端,即不同類別的缺陷的表觀特征具有一定的相似性,難以區(qū)分缺陷的種類,也就無法準確判斷缺陷產(chǎn)生的原因,無法給產(chǎn)品準確定級。背景復雜,在生產(chǎn)場景中難以將缺陷和背景完全分離,缺陷特征不明顯。
同類缺陷的差異較大:如下圖中的鐵軌表面缺陷和帶鋼表面缺陷,由于生產(chǎn)過程中光照條件、生產(chǎn)批次不同、設備狀態(tài)等因素的影響,同類缺陷的大小、對比度和灰度值等表觀特征呈現(xiàn)較大的變化,缺陷特征并不服從同一分布。
]]>